Core-Cross-Linking Accelerates Antitumor Activities of Paclitaxel-Conjugate Micelles to Prostate Multicellular Tumor Spheroids: A Comparison of 2D and 3D Models.
نویسندگان
چکیده
The 2D monolayer cell culture model is often the first step in the prediction of the success or failure of a nanoparticle-based drug delivery system. However, there is often poor translation between the 2D monolayer in vitro results and the nanoparticle-drug performance in vivo. One possible way of bridging this gap is the use of multicellular tumor spheroids (MCTSs) as an intermediate in vitro model due to its 3D structure. This paper aims to quantify and compare the results obtained from traditional 2D monolayer cell cultures and 3D MCTS by studying the cytotoxic effects of free paclitaxel (PTX) and paclitaxel, which has been conjugated to a poly(ethylene glycol methyl ether acrylate)-b-poly(carboxyethyl acrylate) (POEGMEA-b-PCEA-PTX) block copolymer and self-assembled to give a micellar delivery system. The core of the micelle was cross-linked with a diamino nondegradable cross-linker to compare the effects of micelle stability on the results. Although the 2D prostate tumor cell culture results indicated that all micellar variants (IC50: 193-271 nM) were significantly less toxic than free paclitaxel (IC50: 15.2 nM), the micelles showed faster and higher cytotoxicity than free PTX in the 3D prostate MCTS. The cross-linking of micelles even showed accelerated antitumor activities to the MCTS compared with un-cross-linked micelles. The results indicate that DAO-cross-linked POEGMEA-b-PCEA-PTX conjugate micelles will be a useful nanodrug carrier for prostate cancer therapy. MCTS offers a very promising method of incorporating 3D structures into in vitro testing.
منابع مشابه
Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer.
It is becoming recognized that screening of oncology drugs on a platform using two-dimensionally (2D)-cultured cell lines is unable to precisely select clinically active drugs; therefore three-dimensional (3D)-culture systems are emerging and show potential for better simulating the in vivo tumor microenvironment. The purpose of this study was to reveal the differential effects of chemotherapeu...
متن کاملComparison of Radiobiological Models for Radiation Therapy Plans of Prostate Cancer: Three-dimensional Conformal versus Intensity Modulated Radiation Therapy
Purpose: In the current study, using different radiobiological models, tumor control probability (TCP) and normal tissue complication probability (NTCP) of radiotherapy plans were calculated for three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) of prostate cancer.Methods and Materials: 10 prostate plans were randomly selected among patients ...
متن کاملAntiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models.
Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on ha...
متن کاملReduced DNA damage in tumor spheroids compared to monolayer cultures exposed to ionizing radiation
Background: Several cell lines when cultured under proper condition can form three dimensional structures called multicellular tumor spheroids. Tumor spheroids are valuable in vitro models for studying physical and biological behavior of real tumors. A number of previous studies using a variety of techniques have shown no relationship between radiosensitivity and DNA strand breaks in monolayer ...
متن کاملIn Vitro Microtumors Provide a Physiologically Predictive Tool for Breast Cancer Therapeutic Screening
Many anti-cancer drugs fail in human trials despite showing efficacy in preclinical models. It is clear that the in vitro assays involving 2D monoculture do not reflect the complex extracellular matrix, chemical, and cellular microenvironment of the tumor tissue, and this may explain the failure of 2D models to predict clinical efficacy. We first optimized an in vitro microtumor model using a t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2015